これからの天候と農作物

気象庁産業気象課長

村上律 雄

1. 最近の農作物と気象災害

最近、世界的な傾向として、日本においても顕著な異 常気象が頻発し、農業生産に大きな影響を与えている。 第1表に、1971年以降の全国の農作物気象被害を農林水 産省統計情報部の資料から災害の種類別・年次別にとり まとめて示す。毎年各種の気象災害が発生し、被害金額 は年平均 2,600 億円に達している。

被害額の最も大きい気象災害は異常低温による冷害で あり、ひとたび発生すると数千億円に達する大災害とな るが、この冷害が13年間に6回のうち1980年以降4年連 続して発生した。このようなことは統計史上かつてなか ったことである。ついで毎年襲来する台風、干ばつ、梅 雨前線等による豪雨の順であり、いずれも被害額1千億 円以上の年が1回づつある。その他、降霜、降ひょうも 毎年のように発生し、さらに寒波・大雪被害も回数は少 ないが、広範囲に長期にわたり、1977年・1981年に続い て今冬も極めて厳しく大きな影響があった。

もちろん, 異常気象は悪い影響ばかりではない。例え ば、1975年の残暑や1978年の猛暑は水稲の大豊作をもた らし、とくに1978年の水稲10a 当り収量は全国 499 kg, 青森県614kgをあげ、ともにこれまでの最高収量である。

2. 1980年以降の夏の天候の特徴

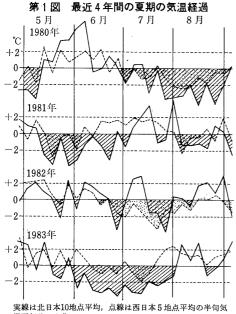
水稲 4 年連続不作(全国平均作況指数が1980年は87, 1981・1982・1983年はともに96) をもたらした天候の特 徴は次のとおりである。

1980年:5~6月の異常高温のあと、梅雨期後半 の7月から盛夏期の8月にかけてオホーツク海高気 圧の勢力が強く, 稲の成育期を通じて最も冷害の影 響を受けやすい幼穂形成期から開花期を中心にほぼ 全国的に低温寡照・多雨の大冷夏になった。とくに 東北地方では、三陸沿岸を中心に連日冷湿なやませ が吹きつけたため、この方面では、8月平均気温が 平年より3~4℃も低かった。この年冷害気象の度 合は全国的に明治・大正の大冷害年次に匹敵または これにつぐ厳しさであった。

1981年:前年高温であった5~6月の稲の本田に おける活着及び初期生育を左右する時期が低温であ った。7月は全国的に天候が回復したが、8月以降 北日本を中心に冷夏・早冷に加え、台風の大きな影響が あった**。**

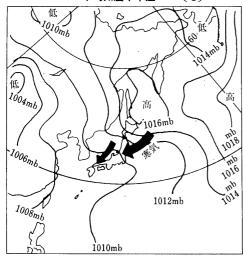
1982年:5月の高温に続き6月も中旬まで順調に経過 した。しかし6月末からオホーツク海高気圧が強まり, とくに東北南部以西で低温となり, つゆ明けは大幅にお くれ、長崎大水害など西日本各地で大きな災害 をうけ た。8月は次第に夏型になったものの9月上旬から秋り ん・早冷となり、台風も8~9月に4個襲来した。

1983年: 4月から5月前年にかけて異常高温のあと、 6月から7月にかけてオホーツク海高気圧が発達し、長 期にわたる梅雨寒となり、北日本では両月とも平年に比 べて2~3℃低温となった。また7月下旬の山陰地方の 大水害, 盛夏期の西日本の猛暑, さらに北日本方面の早 冷現象が起った。


ところで、これらの例にみられるような冷夏をもたら す気圧配置の特性として、オホーツク海高気圧の発達が あげられる。オホーツク海高気圧が発達すると、同時に 北太平洋高気圧の張出しが弱まる。その結果、北の寒冷 な気流にさらされることになる。1980年7~8月にはシ ベリヤ北東部からオホーツク海にかけて上層に形成され た優勢なブロッキング高気圧に対応して、発達したオホ ーツク海高気圧が現れたので、北日本ばかりでなく、西 日本や朝鮮半島にも冷涼な北東風を吹き込んだ。(第2 図)親潮の南下する三陸沿岸では、海水温が低いこと や、やませ時には海霧が発生侵入し日射がさえぎられる

第1表 農作物の異常気象による被害 (全国・億円)

年種類	降箱	降ひょう	豪 雨	長 雨	台 風	干ばつ	異常 温	寒 波大 雷	** その他	21-
昭和46年	81	23	94		772	144	1333			2447
47	140	16	194		399	\		l		749
48	21		58			894	,	ļ		969
49	14	36	128	333	235			132		878
50	Ì	158]		457	406	Ì]	1021
51	36	32	116		747	İ	4093	40	35	5099
52		44		205	34	ļ		482		765
53			320		43	1382				1745
54	142	92	140		908		204		40	1530
55	40	14	123	1	365	1	6919	19	19	7499
56	143	12	45		1796	84	2622	521		5223
57	83	46	1153		553	113	1165			3113
58	52	116	36		275	145	2095	36	125	2880
平均	58	45	185	41	506	244	1418	95	17	2609


X=台風の影響を含む。XX=強風・多雨など。

(農林水産省統計情報部資料による)

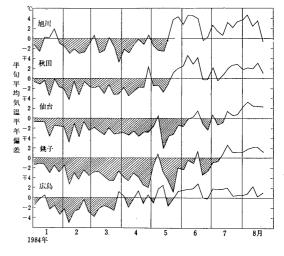
温平年差の変化。 1980年8月平均地上気圧と 第2図

平均気温平年差 (°C)

ので、日中の気温があがらず一層低温となりやすい。こ としの記録的な寒春も, これらの原因によるものであっ

1984年:戦後第1級の寒冬・豪雪であった今年は春も 著しく低温に経過したので、雪どけや発芽・開花などが 大幅におくれ, 雪どけのおくれは苗作りや夏作の植付け にも影響し、一時は5年続きの不作が心配された。

しかし幸い、5月に入ると次第に低温傾向は解消し、 その後も暖候期予報で予想されていた梅雨寒は現れなか った。そして、例年より早めに梅雨が明け、8月にかけ て全国的に著しく高温・少雨・多照に経過したので, 遅 れていた農作物の生育は回復した。冷害の懸念は解消し たが、台風第10号の雨に恵まれなかった関東などでは、 秋野菜の植付期を迎え逆に干ばつの影響が心配されるよ うになった。


なお、このように高温・少雨の夏になったのは、高緯 度から南下した高気圧がオホーツク海高気圧とならず, 中緯度高気圧に変質して北海道東方海上から日本をおお ったため、北日本中心に高温となった。さらに7月末か ら8月にかけてチベット高気圧が北東方向へ張出しカム チャッカ南端まで達し北日本までその影響下に入ったた め安定した夏型の天候となった、などがあげられる。

3. 異常気象・気候変動の動向と今後の見通し

気象庁の「異常気象レポート'84」(近年における世界 の異常気象の実態調査とその長期見通しについて)によ ると,次のようになっている。

(1) 日本における異常気象の発生は、①月平均気温・ 月降水量とも総回数では1950年年代以降漸増している。 その内容は、気温については、1970年代は1960年代に比

第3図 半旬平均気温平年偏差

べて異常高温が減少し、異常低温が増加したが、なお異 常高温の方が多い。降水量については、1950年代以降異 常多雨が減少し、異常少雨が急増したため、1970年代は 異常少雨が目立って多い。これは後述のように1950年代 の多雨期から1970年代には少雨期になった反映とみられ る。ただし、これらは地域や季節により一様でなく、逆 の場合もある。②最近10年 (1973~'82) 間の年々の変動 幅は気温・降水量・日照時間とも前10年間より増大した 地域が多い。

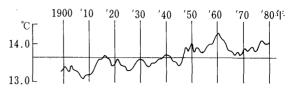
(2) 気候変動については

①全国的な年平均気温の変化は、1910年頃の低極から 10年内外の周期で変化を繰返しながら、1960年頃最も温 mm 暖になった後、1970年代初めまで低下したが、その後は 1900 停滯もしくは上昇傾向にある。地域的に最近10年間は関 東以西では一部を除き上昇, 北日本では逆に大部分で下 降している。世界的には1960年代から温暖化に転じ、最 近高緯度で温暖化が目立つが、1981年のこれまでの最高 から1982年は平年値近くまで低下するなど変動も大きい

②年降水量は1920年代後半から1940年代初めの少雨期 を経て1950年代中頃に極大に達した後、多少の上下はあ 時間 るものの徐々に減少が続いている。ただし地域的に最近 10年間は九州北部などのように増加している所もある。

③年間日照時間は、1940年頃まで増加しつづけた後、 1950年代中頃にかけて急激に減少した。それ以降は再び 1900 増加しており、最近10年間も増加傾向の地域が広い。

④年最深積雪には、18年程度の周期があるようにみえ る。長期傾向としては1940年代まで増加した後、1950年 頃まで減少し、その後は顕著な変化はみられないが、 1960年代と1960年代後半にやや大きな値となった。最近 10年間は大部分の地域で増えている。今冬は各地で1963 1981年を上回る豪雪の所が多かった。

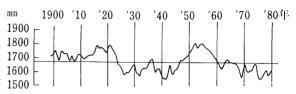

(5)台風の発生数は、1960年代中頃まで増加し続け、そ こで極大に達した後、1970年代中頃まで減少したが、最 近は減少傾向は止まっている。また日本への襲来数は19 40年代後半から1950年頃にかけてと、1960年前後に大型 台風を含め多く、1960年代から1970年代にかけて減少し たが、最近は発生数同様減少傾向は止まっているようで ある。

(3) 今後の予測については、技術的にむつかしい面が あるが,各種の方法を総合して次のように示されている。 ①北半球平均気温は寒暖の変動を繰返しながらゆっく り上昇するであろう。

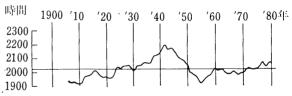
②日本の気温は、北日本等一部にみられる低温化傾向 はしばらく続き、その後全国的に上昇するであろう。

ただし、これらは一般的な傾向で、年により、また地 域により、これらとは違った極端な天候が現れることが

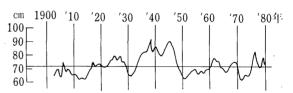
第4図 日本の年平均気温の経年変化(5年移動平均)



全国23地点の平均。


予想される。

地点名:網走・根室・寿都・宮古・山形・石巻・金沢・長野・前橋・熊谷 ・水戸・浜松・境・浜田・彦根・和歌山・厳原・熊本・宮崎・多 度津・高知・名瀬・石垣島


第5図 日本の年降水量の経年変化(5年移動平均) 全国23地点の平均。地点は第3図と同じ。

日本の年間日照時間の経年変化(5年移動平均) 第6図 全国23地点の平均値。地点は第3図に同じ。

日本の最深積雪の経年変化(5年移動平均) 第7図 積雪地帯の29地点の平均。

地点名:旭川・札幌・寿都・網走・根室・帯広・函館・青森・秋田・五城 目・本荘・大曲・角館・横手・湯沢・鷹巣・山形・宮古・新潟・ 安塚・伏木・金沢・福井・敦賀・長野・高山・境・西郷・浜田

③このため、今後も年々の天候の変動が大きく、異常 気象が発生しやいであろう。

以上から、最近の異常気象の多発傾向はなおしばらく 続くと考えるべきである。また異常気象にはいろいろの 種類があり、また同じ種類の異常気象でも現れる時期や 作物の種類によって影響が違ってくる。したがって、農 業の基本に帰り、地力の培養はもちろん、気候に合った 適地適作・適期適作、さらに日々の天候変化に即応した キメ細かな栽培管理等を適確に実施するため,農業気象 (候)情報の利活用が望まれる。